Lossless compression in lossy compression systems

 Almost every lossy compression system contains a lossless compression system

 We discuss the basics of lossless compression first, then move on to lossy compression

Topics in lossless compression

- Binary decision trees and variable length coding
- Entropy and bit-rate
- Prefix codes, Huffman codes, Golomb codes
- Joint entropy, conditional entropy, sources with memory
- Fax compression standards
- Arithmetic coding

Example: 20 Questions

- Alice thinks of an outcome (from a finite set), but does not disclose her selection.
- Bob asks a series of yes/no questions to uniquely determine the outcome chosen. The goal of the game is to ask as few questions as possible <u>on average</u>.
- Our goal: Design the best strategy for Bob.

Example: 20 Questions (cont.)

Which strategy is better?

 Observation: The collection of questions and answers yield a binary code for each outcome.

Fixed length codes

- Average description length for *K* outcomes $l_{av} = \log_2 K$
- Optimum for equally likely outcomes
- Verify by modifying tree

Variable length codes

- If outcomes are NOT equally probable:
 - Use shorter descriptions for likely outcomes
 - Use longer descriptions for less likely outcomes
- Intuition:
 - Optimum balanced code trees, i.e., with equally likely outcomes, can be pruned to yield unbalanced trees with unequal probabilities.
 - The unbalanced code trees such obtained are also optimum.
 - Hence, an outcome of probability p should require about

$$\log_2\left(\frac{1}{p}\right)$$
 bits

Entropy of a random variable

• Consider a discrete, finite-alphabet random variable X

Alphabet
$$\mathcal{A}_{X} = \{\alpha_{0}, \alpha_{1}, \alpha_{2}, ..., \alpha_{K-1}\}$$

PMF $f_{X}(x) = P(X = x)$ for each $x \in \mathcal{A}_{X}$

Information associated with the event X=x

$$h_{X}(x) = -\log_{2} f_{X}(x)$$

Entropy of X is the <u>expected value</u> of that information

$$H(X) = E[h_X(X)] = -\sum_{x \in A_X} f_X(x) \log_2 f_X(x)$$

Unit: bits

Information and entropy: properties

- Information $h_{X}(x) \ge 0$
- Information $h_X(x)$ strictly increases with decreasing probability $f_X(x)$
- Boundedness of entropy

 Very likely and very unlikely events do not substantially change entropy

$$-p \log_2 p \rightarrow 0 \text{ for } p \rightarrow 0 \text{ or } p \rightarrow 1$$

Example: Binary random variable

Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 9

Entropy and bit-rate

- Consider IID random process $\{X_n\}$ (or "source") where each sample X_n (or "symbol") possesses identical entropy H(X)
- H(X) is called "entropy rate" of the random process.
- Noiseless Source Coding Theorem [Shannon, 1948]
 - The entropy H(X) is a lower bound for the average word length R of a decodable variable-length code for the symbols.
 - Conversely, the average word length R can approach H(X), if sufficiently large blocks of symbols are encoded jointly.
- Redundancy of a code:

$$\rho = R - H(X) \ge 0$$

Variable length codes

- Given IID random process $\{X_n\}$ with alphabet \mathcal{A}_X and PMF $f_X(x)$
- Task: assign a distinct code word, c_x , to each element, $x \in A_x$, where C_x is a string of $\|c_x\|$ bits, such that each symbol X_n can be determined, even if the codewords C_{x_n} are directly concatenated in a bitstream
- Codes with the above property are said to be "uniquely decodable."
- Prefix codes
 - No code word is a prefix of any other codeword
 - Uniquely decodable, symbol by symbol, in natural order 0, 1, 2, ..., n, ...

Example of non-decodable code

α_{i}	code words	
α_{0}	0	
α_{1}	01	
α_{2}	10	
α_{3}	11	

Encode sequence of source symbols α_0 , α_2 , α_3 , α_0 , α_1 Resulting bit-stream01011001Encode sequence of source symbols α_1 , α_0 , α_3 , α_0 , α_1 Resulting bit-stream01011001

- Same bit-stream for different sequences of source symbols: ambiguous, not uniquely decodable
- BTW: Not a prefix code.

Necessary condition for unique decodability [McMillan]

- Given a set of code word lengths $||c_x|/|$ satisfying McMillan condition, a corresponding prefix code always exists [Kraft]
 - Hence, McMillan inequality is both necessary and sufficient.
 - Also known as Kraft inequality or Kraft-McMillan inequality.
 - No loss by only considering prefix codes.
 - Prefix code is not unique.

Prefix Decoder

Binary trees and prefix codes

 Any binary tree can be converted into a prefix code by traversing the tree from root to leaves.

 Any prefix code corresponding to a binary tree meets McMillan condition with equality

$$\sum_{x \in \mathcal{A}_X} 2^{-\|c_x\|} = 1$$

$$3 \cdot 2^{-2} + 2 \cdot 2^{-4} + 2^{-3} = 1$$

Binary trees and prefix codes (cont.)

- Augmenting binary tree by two new nodes does not change McMillan sum.
- Pruning binary tree does not change McMillan sum.

 McMillan sum for simplest binary tree

Instantaneous variable length encoding without redundancy

R = H(X)

requires all individual code word lengths

$$l_{\alpha_{k}} = -\log_{2} f_{X}(\alpha_{k})$$

 All probabilities would have to be binary fractions:

$$f_X(\alpha_k) = 2^{-l_{\alpha_k}}$$

Example

α_{i}	$P(\boldsymbol{\alpha}_i)$	redundant code	optimum code
α_{0}	0.500	00	0
α_1	0.250	01	10
α_2	0.125	10	110
α_{3}	0.125	11	111

H(X) = 1.75 bits R = 1.75 bits $\rho = 0$

Huffman Code

- Design algorithm for variable length codes proposed by Huffman (1952) always finds a code with minimum redundancy.
- Obtain code tree as follows:
 - 1 Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol.
 - **2** Calculate the probability of the auxiliary symbol.
 - 3 If more than one symbol remains, repeat steps1 and 2 for the new auxiliary alphabet.

4 Convert the code tree into a prefix code.

Huffman Code - Example

Redundancy of prefix code for general distribution

- Huffman code redundancy $0 \le \rho < 1$ bit/symbol
- <u>Theorem</u>: For any distribution f_X , a prefix code can be found, whose rate R satisfies

$$H(X) \le R < H(X) + 1$$

Proof

- Left hand inequality: Shannon's noiseless coding theorem
- Right hand inequality:

Choose code word lengths $||c_x|| = \left[-\log_2 f_X(x)\right]$

Resulting rate
$$R = \sum_{x \in \mathcal{A}_X} f_X(x) \left[-\log_2 f_X(x) \right]$$
$$< \sum_{x \in \mathcal{A}_X} f_X(x) \left(1 - \log_2 f_X(x) \right)$$
$$= H(X) + 1$$

Vector Huffman coding

- Huffman coding very inefficient for H(X) << 1 bit/symbol
 Remedy:
 - Combine *m* successive symbols to a new "block-symbol"
 - Huffman code for block-symbols
 - Redundancy

$$H(X) \le R < H(X) + \frac{1}{m}$$

- Can also be used to exploit statistical dependencies between successive symbols
- Disadvantage: exponentially growing alphabet size $\left\|\mathcal{A}_{X}\right\|^{m}$

Truncated Huffman Coding

- <u>Idea:</u> reduce size of Huffman code table and maximum Huffman code word length by Huffman-coding only the most probable symbols.
 - Combine J least probable symbols of an alphabet of size K into an auxillary symbol ESC
 - Use Huffman code for alphabet consisting of remaining K-J most probable symbols and the symbol ESC
 - If *ESC* symbol is encoded, append $\lceil \log_2(J) \rceil$ bits to specify exact symbol from the full alphabet
- Results in increased average code word length trade off complexity and efficiency by choosing J

Adaptive Huffman Coding

- Use, if source statistics are not known ahead of time
- Forward adaptation
 - Measure source statistics at encoder by analyzing entire data
 - Transmit Huffman code table ahead of compressed bit-stream
 - JPEG uses this concept (even though often default tables are transmitted)
- Backward adaptation
 - Measure source statistics both at encoder and decoder, using the same previously decoded data
 - Regularly generate identical Huffman code tables at transmitter and receiver
 - Saves overhead of forward adaptation, but usually poorer code tables, since based on past observations
 - Generally avoided due to computational burden at decoder

Unary coding

"Geometric" source

Alphabet
$$\mathcal{A}_{X} = \{0, 1, ...\} = \mathbb{Z}_{+}$$
 PMF $f_{X}(x) = 2^{-(x+1)}, x \ge 0$

 Optimal prefix code with redundancy p=0 is "unary" code ("comma code")

 $c_0 = "1"$ $c_1 = "01"$ $c_2 = "001"$ $c_3 = "0001"$...

Consider geometric source with faster decay

PMF
$$f_X(x) = (1-\beta)\beta^x$$
, with $0 \le \beta < \frac{1}{2}$; $x \ge 0$

 Unary code is still optimum prefix code (i.e., Huffman code), but not redundancy-free

Golomb coding

For geometric source with slower decay

PMF
$$f_{X}(x) = (1 - \beta)\beta^{x}$$
, with $\frac{1}{2} < \beta < 1; x \ge 0$

Idea: Express each x as

$$x = mx_q + x_r$$
 with $x_q = \left\lfloor \frac{x}{m} \right\rfloor$ and $x_r = x \mod m$

Distribution of new random variables

$$f_{X_{q}}(x_{q}) = \sum_{i=0}^{m-1} f_{X}(mx_{q}+i) = \beta^{mx_{q}} \sum_{i=0}^{m-1} f_{X}(i)$$
$$f_{X_{r}}(x_{r}) = \frac{1-\beta}{1-\beta^{m}} \beta^{x_{r}} \quad \text{for} \quad 0 \le x_{r} < m$$

 X_q and X_r statistically independent.

Golomb coding (cont.)

- Golomb coding
 - Choose integer divisor $\beta^m \approx \frac{1}{2}$
 - Encode x_q optimally by unary code
 - Encode x_r by a modified binary code, using code word lengths

$$k_a = \left\lceil \log_2 m \right\rceil \qquad \qquad k_b = \left\lfloor \log_2 m \right\rfloor$$

- Concatenate bits for x_q and x_r
- In practice, m=2^k is often used, so X_r can be encoded by constant code word length log₂ m

Golomb code examples

Golomb parameter estimation

Expected value for geometric distribution

$$E[X] = \sum_{x=0}^{\infty} (1-\beta) x \beta^x = \frac{\beta}{1-\beta} \qquad \rightarrow \qquad \beta = \frac{E[X]}{1+E[X]}$$

Approximation for E[X] >> 1 $\beta^{m} = \frac{(E[X])^{m}}{(1+E[X])^{m}} \approx 1 - \frac{m}{E[X]} \approx \frac{1}{2}$ $m = 2^{k} \approx \frac{1}{2} E[X]$ $k = \max\left\{0, \left\lceil \log_{2}\left(\frac{1}{2}E[X]\right)\right\rceil\right\}$ Reasonable setting, even if E[X] >> 1does not hold

Adaptive Golomb coder (JPEG-LS)

